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I. INTRODUCTION

In the interest of building an axial gain cross field amplifier,

analysis was desired for the tapered waveguide (Fig. 1.). A stepped

dielectric profile was chosen to model the linearly tapered profile

(Fig. 2). The formulation presented in this paper is based on the

geometry of Fig. 3, where a given slab is removed from the step. Par-

ticular interest in the behavior of certain modes in the presence of a

discontinuous dielectric included the TE0 ,1 TM0 ,I. TEM, and several

TEm,n and TMm'n modes.

The original approach taken for the problem was the modal expan-

sion technique. This traditional approach generates -a dispersion deter-

minant by enforcing continuity of certain fields across an interface

between two mediums. Roots (kz as a function of w) are obtained by

finding the zeros of the determinant formed from these boundary condi-

tions. The formulation is straightforward, but numerical difficulties

-' arise when it is translated to code and run. This motivated the need

for a fresh approach to the problem.

The direct integration approach simply involves integrating two

second order linear differential equations for TEm n and TMm'n modes

(m $ 0) or one second order linear differential equation for TEO,n ,

TMO,n , and TEN modes. The formulation can handle discontinuous and

linearly tapered (as a function of r) dielectric profiles. Theoreti-

cally, it can also handle combinations of both to produce a general

dielectric profile. Irrelevant of the number of dielectric layers

comprising the profile, the number and format of the second order

o-1-
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differential equations does not change for a given mode. There are no

Bessel functions, and consequently no need to evaluate Bessel function

expansions in a computer program. A major advantage regards the ability

to analyze the TEM mode for a discontinuous dielectric profile, as shown

in Fig. 3A. This seems logical based on the fact that all modes must

obey Maxwell's equations for a given dielectric profile. In stark

contrast, the modal expansion technique sheds no light regarding analy-

sis of the TEM mode for a discontinuous dielectric profile. Finally,

I upon completing the integration, all field components of a gi',en mode

are easily computed using the values of the integration parameters, the

mode propagation constant, and Maxwell's equations.

The code analyzes the geometry of Fig. 3A and its effects on the

* following mode types: TMI, n (EH mn), TE ,n9 TM0,n, and TEM modes. The

user inputs a desired dielectric profile, mode type, and initial condi-

tions from which the propagation constant kz and all relevant field

patterns (as a function of r) are produced. For TEm,n and TM modes,
m~ M , n

an additional parameter, a, is produced which interprets the degree of

hybridization due to the dielectric profile. The program also checks

the orthogonality between any two modes of a given mode type and similar

azimuthal mode number.

2-2
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TAPERED COAXIAL WAVEGUIDE

f ~~.... . . ..... ,

44

INNER CONDUCTOR

DIELECTRIC

AIR

OUTER CONDUCTOR G221415

Fig. 1. Tapered coaxial waveguide.
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STEP APPROXIMATION

TAPERED COAXIAL WAVEGUIDE

TYPICAL SECTION USED IN FORMULATION

I Fig. 2. Step approximation of the tapered coaxial vaveguide.



p2

A. STEPPED DIELECTRIC SECTION
FRONT VIEW

B. LINEARLY GRADED DIELECTRIC SECTION

FRONT VIEW

G221413

Fig. 3. (A) Stepped dielectric section, front view.
(B)-Linearly graded dielectric section, front view.
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L. MODAL EXPANSION APPROACH

The modal expansion technique is presented in this chapter.

Section 2.1 derives the dispersion determinant for the geometry of Fig.

3A. We start with the scalar Helmholtz equation and proceed to separate

the variables. The scalar wave functions (eigen functions) are con-

structed, which then allows the appropriate boundary conditions to be

applied at the dielectric interface (r - b). Finally, the dispersion

determinant is found which describes the modes propagating in our sys-

tem. Section 2.2 discusses the drawbacks using this approach. We note

that primes in the equations represent the derivative with respect to

the radial coordinate r.

2.1 Derivation of the Dispersion Determinant

The derivation that follows is based on that of Harrington1 and

Rothwell.2  The scalar wave functions for the geometry of Fig. 3 must

-,. obey the scalar Helmholtz equation written here in cylindrical coordi-

nates:

1aa I 1 32* 32 0 2* (1)
ar az

where

- scalar wave function

k constant

The common approach taken to solve Eq. 1 is to separate the variables.

The usual form for the solution is

-6-
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* - R(r)t(*)Z(z) (2)

Following the standard procedure, the separated equations are

r r m R - 0 (3)

d2 + m 2 - 0 (4)

dO 2

d2Z + k2Z 0 (5)
dz2  z

where

k2 + k
2  k2

z r

Solutions to Eqs. 4 and 5 are harmonic functions. Equation 3 is

known as Bessel's equation of order m and argument k * r with solutionsr

having the general form

R(r) Zm(kr, r, A, B) z AJm(krr) + BYm(krr) (6)

where

Jm(krr) = Bessel's function of the first kind
,I

Y (krr) - Bessel's function of the second kind

A, B = constants

____ . ..' ; . +- V°N .+ +
yV". NM W A



and kr may be real or imaginary. Solutions to Eqs. 4 and 5 are of the

f orm

OW - Cos (mO) (7)

*()- sin (mf) (8)

ZWz - e -kzz(9)

where kzis the propagation constant. The scalar wave functions for

each region of Fig. 3A are:

Region 1

'1') '1'm)k -jk zz(1a
*1M, - Zm(rl. r, Al. A2) cos ("*)e(ia

,el . z el)(k rl, r, B,, B 2) sin (W) e~k (l0b)

Region 2

(m2) (m2 r(k r, 2c o (m$) e jkzz(Ila)

(e) (e2)' m# -jk zz Ib
(e2) M ( r2' r, 1P D 2) sin' * lb

where Ail. Bit and Di are constants (I - 1, 2). The superscripts ml and

m2 denote the contributions from TM modes for regions 1 and 2; the

superscripts el and e2 denote contributions from TE modes for regions 1

and 2. The separation equations which the wave functions must satisfy

are:

-8-
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k2 + k2  2 . 1 (12a)
z ri 1 1 1 2a

k2 + k2  = k2 . w2 c2V (12b)
z r2 2 2 2(1b

for regions 1 and 2, respectively. The resultant electric and magnetic

fields in each region have contributions from both the TE and TM

modes. Consequently, hybrid modes will propagate in our system.
-. ,.

Boundary conditions were applied to the following field components

written in general for region i(i - 1, 2):

E = m i)(kri, r, K1 , K2) + kriZ )(ki r, KL ir m Ki2 im i 9 4)]3'

-Jkzz
sin ( ) • (13a)

k 2  -J~ck z
jrE z (kri' r, K5, K6) cos (13b)"i"z _ JWFi m

H -k (k r. K mk L z(eL)(k r KK
* , ri a ri' 7 8 Uir m ri 9 10 )]

cos (mW) eJkz (13c)

kz  -Jk z
H = r__Li(ei)(kr, r, Kii K12) sin (mW) e z (13d):..z jU ooi m i il 1

where Ii (i - 1, ... , 12) is a constant.

-9-
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For compactness, we define the following constants:%

S1 M 3(k ria) Si iJi(kria

S2 n rl n' r ( a)

2 n k a) 2 n ri&

S3 -Ji(k 1 b) S;- J'(k 1 b)

S4 = Y (k b) S' - Y'(k b)
4 4r n r

S5 = n (kr2 bs;- j'(k r b)

s = Y(k b) S; - r2~b
- k b) 6 n r2 r

ii = r2( S1 M J'k C)
7 J~ n r 7 n r2

S8 = -Y(k% M) Y'(k~c (14)

We are now in a position to evaluate the following boundary conditions:

E0 Mo (15a)

-oW (15b)

at r - a and r - c. Applying the above boundary conditions to Eq. 6 and

4 using Eq. 14, we have

A -A S!(16a)
2 1 2

2 1 5'

-10 -
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at r - a and

s~7

C a - C Si (17a)
2 1 S8

E2 -D1 St (17b)

at r = c. Using Eq. 6, we eliminate A2 , B2 1 C2 , and D2 with the aid of

Eqs. 16 and 17,

-m).A Z (k , r, 1, -SS1(18a)
m Ilmrl 2

-B(el) BIZ (k, r, 1, -S'(S ) - )  
(18b)

m 1 inn

for region 1. and

! .(m2)

*Min2) C1Zm(kr2' r, 1, -$7 8 (19a)

(e2) = DIZ (kr2  r, 1, -Si(S%)- I )  (19b)

for region 2. At the dielectric interface (r - b) E*, Ez , H#, and Hz

must be continuous. Using equation sets of Eqs. 13 and 14 for each

region produces:

- 11 -
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E Continuous

IS3 - s4 . ,] b + s - s2 s1] Bikrl

s-s67 -,.2
b  

- s Dlk 2 -o (20)

E Continuous

z

S]Ak2 [ Clk22  (21)

H 0 Continuous

- [S 3 - S4 Clk2 Blik

[S; -I;qS] l S~ DiI 2bMk 0 (22)

H Continuous
z

F 1 k2  FS;1 D~k22

I 3 - S4 § 5 - 6 -f r  0I S l12 (23) W1

To further simplify. Eqs. 20 through 23, we define the following con-

stants:

- 12 ,
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Gl- S2S3 - SIS4 G5 - S5S8 - S6S7

G2 sps3 - ss4 G6 - SS 8 -S;S7

G = S I - SS G7 = SSi - SS-
3 2S3 14 G7  5 A 6S7'

G4 s3; - sis G8 -ss - °s' (24)

With the definition of Eq. 24, Eqs. 20 through 23 become

___kz G4kri 1I1 5kz G8kr2
1l we 1 bS 2 

+ B SI - C 1 2 bS8  D1 Si 0 (25)

G k 2  Gk 2

A 1 rI r C = 0 (26)

icS:

1 2  2 8

G~~kri __ _ _k r 2 m

B 1 IS2 D 1 12Si = 0 (28) j 1 2 1 S

Gk2  G 2

for E*, Ez, H*, and Hz , respectively. Based on Eqs. 25 through 28, the

characteristic equation in determinantal form is

-13
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-1 q Fq P V

4

A B C D

0 2 1-- 0 7 ,r
11 2C2 1

G k 2kG kG12 ji2S8

I krl 0G5kr20

12 2 8
- 0 (29)

G 3krl MG 2kz G6kr2 mG7k z
S2  w 1bSj S8

mG kz G4krl mG5kz G8kr2

2e1b w 28c bS 8S

TM TE TM TE

This determinant represents solutions for hybrid modes and columns

p marked TM or TE denote the relative contributions to the hybridiza-

tion. In general, the zeros of this determinant lie in the complex

plane.

If we set m - 0, the determinant simplifies to

G k2  Gk 2

02 rl 07 r2

122 28

G k 2  G k 2
In 0 5r2 0

=0 (30)

G3kri 0 G6kr2

0 00

S2,

-14-
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Determinant Eq. 30 is the uncoupled version of Eq. 29 and it represents

%solutions to pure TE and TM modes. This is illustrated by interchanging

the first and third rows of Eq. 30, producing

r 1  0

-0
..I

0i r 2

where

G 3Gkrl G6kr2
S2  S8

Gk2 Gk2
1 rG5 r2

JS

12 
28

for TM modes, and

G 2 G k2
2 k rl 7 r2

1 28 -

r2

G4krl G8kr2

2 8

for TE modes.

-15-



22Drawbacks

As dielectric layers are added to the profile, the increasing

number of continuity conditions applied at each interface results in a

dispersion determinant that grows as the square of the number of transi-

tions. This drawback has two consequences. The first is that the

dispersion determinant must be rederived for each new layer of dielec-

tric added. The second is, obviously, the increasingly complex deter-

minant for which a zero must be found.

The modal expansion approach is a technique where continuity of

certain field components is applied at the boundary where the character-

istics of the medium change abruptly. Cases where the dielectric is

- tapered continuously as a function of r cannot be handled by this formu-

lation. Another drawback results from numerically approximating

Bessel's function in a computer program. Problems arise when the argu-

ments of the expansions used approach zero due to k rapproaching zero.

Instabilities and/or numerical overflow result, placing restrictions on

investigating modes which are in transition between the fast and slow

wave regions of the structure. Due to the above mentioned problems, we

could not analyze the dielectric loaded coaxial waveguide success-

fully. This led us to develop the technique described in the next

:; : ~ chapter.
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III. DIRECT INTEGRATION OF MAXWELL'S EQUATIONS

This chapter will lay the foundations used to calculate the elec-

dieecticprofile. Starting with Maxwell's equations, 3 Section 3.1

willdevlopa coupled second order differential equation system in theSI;radial coordinate. The propagation constant sought, k., is found by

integrating this system of differential equations at a given frequency

Mw and azimuthal eigenvalue (in). Integration is performed using a

"shooting" method, where the shooting parameter, k., is varied until

certain boundary conditions are satisfield. Section 3.2 discusses the

* initial and boundary conditions used in the integration. For discontin-

uous dielectric profiles, Section 3.3 formulates the jump conditions for

the equations. The equations for the field components, which are

directly obtained from the solutions to the integration, are given in

Section 3.4. The normalization of the field components and computation

of orthogonality are discussed in Section 3.5. Finally, in Section 3.6,

the equations are transformed into a format suitable for numerical

integration. We note that boldface type will represent vector quanti-

ties.

3.1 Derivation of the Differential Equation Systems

The general Maxwell's equations for a region free of charges and

currents (p =0, 1 0) are

E * -O0 (31a)

- 17 -
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V • B - 0 (32a)

V x H - __D (33a)at

V x I - as (34a)
at

For linear dielectric media, the following relation holds:

D - cK (35)

The formulation will be limited to the case where t i (m0 is the

permeability of vacuum):

S 0 nOB (36)

Assuming harmonic variation and uniform propagation in the +z direc-

j (wt-kzz)
tion, e , Eqs. 31a through 34a become

V * D - 0 (31b)

V * B - 0 (32b)

V x H - JwD (33b)

V x K - -JWu 0B (34b)

where Eq. 36 was used in Eq. 34b for B. Rewriting Eqs. 31b through 34b

in cylindrical coordinates yields

D r 1 D ! D z + D r

+ =(31c)5z r
S. 
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llr 1 aH, Hz Hr
+'+ + - + -  0 o(32c)

1 aHz 3H,T - r -T+- D .z- r 3cr

SHz z3 H J D - 0 (33c-r)

ar 3zr
ar + ar _*D = 0 (33c-z)

r r3*

aH¢ M r H¢

'r r +  - -JwDz - 0 (33c-z)

1 aE + JWUoH 0 (34c-r)
r a* az O r

3Ez  aEr- 3z 8Er + H 0 (34c-f)

+ + JwuioH z -0 )34c-z)3r r 3O +r

The following polarization is chosen for the f dependence:

D (r, ) D (r) cos (m) (37a)r r

E (r, ) + E (r) cos (mf) (37b)

D (r, ) + D (r) sin (u*) (37c)

E (r, ) E (r) sin (m) (37d)

D (r, ) D (r) cos (t') (37e)

EJr, *)
E (r, + E (r) cos (m*) (37f)#,,z z

Hr (r, ) H r (r) sin (me) (37g)

- 19-
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---- - -----------.-----.-.-

H ) + H (r) cos (m*) (37h) j
H (r, ) + H (r) sin (n*) (371)

z z

'A,(

Using this polarization in Eqs. 31c through 34c-z and canceling common

cosine and sine terms gives

Dr  mD Dr
+ -jkzD _-- 0 (31d)

T- r z z r

all +r JkzHz +--- +- 0 (32d)Tr- r nHr

IZ + jkH -JwD 0o- (33d-r)
r z* r

az--- kiH - JWD -o (33d$ )

mHz

r V Ht 0 (33d-r)

- - + jk E + JuH =0 (34d-r)
r z 0 r

.r jkz~r + JWU D . 0 (34d- )

ar r  0

L9 +E m E r + E + w l
'-+ +j~--H 0 (34d-z)

4 Sz
ar r Jkzr +  o 0 (3d

- 20 -
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Equations 31d through 34d-z will provide the basis for determining a

system of second order linear differential equations. Before proceed-

ing, we further assume that e is a function of the r coordinate only.
aEz

We begin by solving Eq. 34c-# for - and then using the constitu-
3D z

tive relation (Eq. 35) to generate y-, which yields

'D Bc

arZ E z a W iw 0 eHf + jk zD - 0 (38)

If we solve Eq. 31d for JDz and then take the radial derivative, we have

(JDZ) 2D I Dr Dr + E mE mE 1

raa. r-l

where the constitutive relationship for D was used. By taking Eq. 39

and substituting for aD z in Eq. 38, we can solve for 32D /ar
2

- r 

2
a D Dr  D r  _ m BE mE 3C M E 2r I3D~~ Dr+ __ ± + + - oE c kH¢ + k2D

-r2  r ar r2  r Br r Br r2  zz ar 0 z z r

(40)

In order to put Eq. 40 into a form involving only electric field com-

ponents and their derivatives, we substitute for H. and Hz from Eqs.

33d-r and 34d-z, respectively,

2 
1 F__2aiwD[k 2 k 2 + 2 2+ +1 + (nc)+ D 2mcEI r~ rr rB

Br 2L r ir L J r2

(41)

where the following relations were used:

. ... . . . . .", 
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3(lnx) . 1 ax (42)

.

k2 . W 20 (43)

Equation 41 represents the first half of our differential equation

system.

To generate the other half of our differential equation system, we

take the radial derivative of Eq. 34d-z and solve for a 2E /a 2 j
8 2 E 8D mD a ~m r IcaE, r IE,

ar - r r e §r ar rar re ar r

- I Jw0Hz e (44)

where the constitutive relation for Er was used. Using Eqs. 33d-* and

34d-z, a solution for a as a. function of E and Ez  is obtained.
z

Substituting -r- into Eq. 44 yields

a 2 E F2 _2 1 -1 a(lnc)l [I(lnc) + 11
_L4 = E k - k + 2 r ar ar a-
-, r r

nm ODr + mDr JmkzDH a(nc)(
rcar r 2j rcar (45)

where Eqs. 42 and 43 were again used. Equation 45 is finally put into a

form involving only electric field components by substituting for Dz and

HZ from Eqs. 31d and 34d-z, respectively:

2w

r + 2 r rr (46

-22-



Equation 46 completes the formulation of the differential equation

system.

Upon normalizing Eq. 41 by dividing by c (permittivity of vacuum)

in order to have consistent units with Eq. 46, the second order differ-

ential equation system is

a 2D D r2
W r = r k2  + 1 ln) )

3r 2 c 0 2 r r

1 aDr L(lnc) 1] : (47a)

+. 5r r r +  2
2 2r

a2E* k2 2 m2r[_ +11 i j-I-c+
Er r- z-tk _r (47b)

3r 2rL

where c - Cr (Cr is the relative dielectric permittivity). Equation

47 is used to find the propagation constant, kz, for the TEm,n and TM.,n

modes as well as the "TEm,n like" (HEm,n) and "TMm,n like" (EHm,n)modes.

For the special case of m - 0, Eq. 47 becomes

a2 D a
rD I J 0D 2 2 1 3(nc) 1 r (48na)_

0jO z .10i3 2z E 2 2 1 1 aE

-E [k2 2 (48b)f z ar
3r r

Equation 48 is the uncoupled form of Eq. 47, with Eq. 48a applying to

.JTMo,n and TEM modes, and Eq. 48b applying to TE0, n modes. It is inter-

J. eating to note the analogous relationship between Eqs. 47 and 48 and the

dispersion determinants of Eq. 29 and 30.
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3.2 Initial and Boundary Conditions.

For TE ,n, TMO,n, and TEM modes, a one-dimensional "shooting"

method is used, with kz being the shooting parameter. However, "TEm,n

like" and "TM, n  like" modes require a two-dimensional "shooting"

method. The shooting parameters here are kz and the dimensionless

parameter a, which we define as

i jHz

a - C0Dr (49)
cODr

at r - a and co - speed of light in vacuum. The degree to which a mode

. has characteristic TE behavior (Hz component dominant) or characteristic

zz
'. TM behavior (Ez component dominant) is representedby a. The initial

. magnitude of a points the integration in the direction of an HEm,n or

EHm,n mode when a nonuniform dielectric is present. When the boundary

conditions are satisfied, the final magnitude of a describes the degree

of actual hybridization. There are two limiting cases for a which occur

when a nonuniform dielectric profile approaches a uniform profile:

5%.lal+0

J

as pure TM modes are approached, and

al 10

as pure TE modes are- approached.

424
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Integration of Eqs. 47 and 48 requires the value of a given field

component and its derivative with respect to the radial coordinate at

the inner conductor of Fig. 3A (r - a). The tangential electric field

components must satisfy the boundary condition

E -0 (50a)

E E 0 (50b)
z

at r - a and r = c, respectively. Using this result in Eq. 31d and 34d-

* z yields

D+ Dr

- _ + " 0 (51)
rr

,. - - + J o (52)
T rr 0(

-, Using Eqs. 49 and the constitutive relation for Er, Eq. 52 becomes

Summarizing the initial conditions for uniform and nonuniform dielectric

profiles:

1. Equations 50b and 51 are used for the TMn and TEI modes.

2. Equation 50a is used for TEO,n modes.

3. Equations 50, 51, and 53 are used for TEm,n (HE m,n) and

TMm,n (EHm,n) modes.

- 25-
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As mentioned, the "shooting" method varies the shooting parameters

until the boundary condition at r - c is satisfied. For TMO n and TEM

modes, Eq. 50b must be satisfied, while TE0 ,n modes require Eq. 50a to

be satisfied. Finally, Eqs. 50a and 50b are combined to form the bound-

ary condition for TEm,n (HEmn) and TMm,n (EH m,n) modes:

E 2+ E 2 . 0 (54)z  f,

We note that for the two-dimensional shooting, kz enters only in the

differential equations and does not appear in the initial or boundary

conditions. Conversely, a enters only in the initial conditions and

does not appear in the differential equations.

3.3 Discontinuous Dielectric Profile Formulation

When discontinuities in the dielectric profile are present, as in

Fig. 3A, integration of Eqs. 47 or 48 cannot proceed past a discontinu-

aD H
ous point unless expressions for rand can be developed.

At the dielectric interface of Fig. 3A, the following field com-

ponents are continuous:

D 'D [21 (55a)
r r

Ell E [21 (55b)

, E [l ] ] E l 2 ]  (55c)

z z

-26-
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Hl] - H[2 1  (55d)

H[ 1 1 - H [2] (55e)

where superscripts 1 and 2 denote the dielectric regions. Substituting

for E [1 and E(2 ) using Eq. 31d, we generate Eq. 56 from Eq. 55c,

F IE D Il 21 D[21 me2E[2]

rr lr 'r + - 2(5

wv. where e. and e2 represent the dielectric permittivities of regions 1 and

2, respectively. Solving Eq. 56 for D1 21 /3r,
r

313[21 3 D111  e D(1
'111

r' 2T r .I + _- I (57)
9r' 1 r r

:, j [11 and H~Ill [2 ]  uigE.3dzit q
Similarly, we substitute for H z  and H2i

55e,

a E~~~~lI~ E_'1m D 1  E 2 LE 2  m D 2 lFaEl + l [2. r (58)
WU~ 0 c 3 r r 1 0k re 2

" 3E 21 ] €Solving Eq. 58 for

3[2) 3E (11  FDIl
#£2 r(59)

For the special case of m 0 0, Eq. 59 becomes

- 27 -
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3E 12 1 a31 ll
(60)

1Fr

Summarizing Eqs. 57, 59, and 60 for reference (Eq. 57 is divided by 0)

a[2] C aD~l11  [c2 D1 l
r I - 2 r r (61a)

ar e 0~ C r [C C 0

+ [r~-' (61b)

Equation 61 is used for TEmn (HE) and T~m,n (EHm ) modes.

aD [21  C aD~1 l + c£D1
r 1 2 er~ 2 (62)-F-F0 -C01 L T - C

Equation 62 is used for TMO0 n and TEM modes.

Mi (63)

Equation 63 is used for TEO,n modes.,

3.4 Field Equations

The following field components may be computed once the param-
Dr 1 aD a
etr -,E -- , and ahave bendetermined. Equations 31d,

0 0
34d-z, 34d-r, and 33d-r are used to derive Eqs. 64 through 67, respec-

tively,

JD [a- -4 -. .+ -E (64)
L z 3 r r 1k

-28 -
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JR r[ E rD (65)M : - _ + v+ i _

-r - . + kzE f] (66)

H =J - Hz + wD 1 (67)
r r kz

3.5 Normalization and Orthogonality Relations

Once computed, all field components are normalized with respect to

Poynting's vector taken over the cross-sectional area of the waveguide:

2w c
2k' f  f EL x H.• dA0 a

2w c
-f f EL x k " n dA

O a

2w c
f0 fa [Er ' * Hk -Et Hr,k] Cr dr d (68)

where

6 ,k - Kronecker delta function

dA - r dr df

n - unit vector normal to dA in +z direction

-29-
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Normalization for a given mode requires computing Eq. 68 with k - k

using the unnormalized fields, taking the square root of the absolute

value and dividing each component by the result.

Orthogonality between two given modes I and k (L * k) is an impor-

tant condition that must be satisfied in order to have any confidence in

the solutions for k and kz' k .  Equation 68 is used to evaluate the

orthogonality between the normalized modes I and k. Due to the normali-

zation, Eq. 68 gives the value of I when self orthogonality is computer

(X k).

3.6 Form for Numerical Integration

Integration of Eqs. 47 and 48 is facilitated if they are trans-

formed into a dimensionless form. We define the following normaliza-

tion:

r

r (69a)

where

a¢ r c

• "As a consequence of Eq. 69a, we have

a
r "r-Jd=-a ]j = a - (69b) r

i Using Eq. 69, Eq. 47 becomes

-30 -
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a D 1 D (k~ 2 k 2) a 2+m2+1+L3le.~~~~- r C.. .. :.>
3(r0 ) 2 C r o 0 rj0

+ 1 - -- - + (70a)

A 01
L J°r° r

LZ E2 2 2 m2+j I ED r[ + 3(lnc)]E (k k ) a + o- ++ (70b)

z(0  r 0 jo

Similarly for Eq. 48, we have

rDr 1 D k 2 a2 + 1 3(ln-) I
2(~ 2 eae zr ar

.(r0 ) 0 0 o)- 0 0-

1 3Dr (ln) 1
+ +c r 0 gro F01 (71a)

E k 2 k2  a2 + (71b)
a~o2 z r~ ka 2 ] r 0 3r 0

Equations 70 and 71 are dimensionless.

The jump discontinuity equations, Eq. 61, 62, and 63, are also put

into dimensionless form, since they are used in the integration process:

Mdr 1 2 aDt1 r 12
L-r 2 (72a)

8r0C0 C01CIa 0 C1 E0 r0
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+E2  [EC2 £D r~l (72b)

1 0 c 2

3D I c2 3D11  2 ]
CE c r c

U0- 0 0 1 0 0i 0

(74)

The IMSL routine DGEAR (see Appendix A.l) is used to integrate

Eqs. 70 and 71. But DGEAR requires a first order linear differential

equation system. To accomodate DGEAR, Eqs. 70 ana 71 must be trans-

formed into a first order linear differential equation system.

For TEm,n LHEmn) and TMmn (EH M) modes, we define the following

variables:

Y . r- (7 5a)
1 3r 0c0

y2  - # (75b)

Dr (7 5c)

Y 4 E (75d)

and

-32
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yoa- (76a)
1 3

- Y2  (76b)

¥3 M Y (76c)

M Y (76d)
Y4 2

where the prime denotes the derivative with respect to the normalized

radial coordinate. With the aid of Eqs. 75 and 76, Eq. 70 becomes

y Y3 k 2  k2 ) a2 + m2 +  
-+ (ne) (liO I +c 1

( + r 2  r 0 ) 1 2

(77a)

2  2 m (lnc) 77b)

2i Y(k k a + ~ 0 2{+ (77b
" 4 (kz r2 a  2  

r m20e

Y Y (77c)

Y4 = 2 (77d)

Equation 77 constitutes the first order differential equation system

which is integrated by DGEAR.
I.

Similarly, for TMO,n and TEN modes, we define
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Y D r (78a)YI 3r r0 co0

Dr

2 r (78b)
'2 0

1 l 
(79a)

Y2 Y I (79b)

With the definition of Eqs. 78 and 79, Eq. 71a is transformed:

-Y2  (2 k k2  a2  1 L 3 (lne)

• ° y

YFinally, for TE2, modes, we define

1 3 r0

4)?1

+- YI " nc (80a)

Y2 
= E (80b)Y 3 (81a)

ay I

2 Y (82b)Y2 1
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Transforming Eq. 71b using Eqs. 81 and 82,

Y1 Mz [(k 2 -k2) a2 + Ij2 (83a)

Y2 M Y (83b)

Equations 80 and 83 represent first order linear differential equation

systems integrated by DGEAR.

Another requirement for DGEAR is a system of partial derivatives

PDi,j defined as the partial derivative of Yj with respect to Yj. In

light of this definition, Eq. 77 generates

PD 3(lnc) I (84a)

PD 1 0 (84b)1D,2

PD - 2 -k2, 2 m2 + 1 1 3(lnc) (84c)PD1,3 k k + 2 + r 8c
r 0  0 0

PD . 2m (84d)
1,4 2r 0

PD - 0 (84e)
" ' " " P 2 ,1I

PD - -I (84f)
2,2 r 0

PD2 ,3  r + A (84g)
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PD [k2- k2 a 2 + (84h)2,4 [k 2k]a rr 0

PD3,1 - 1 (841)

PD3, 2 - 0 (84j) L

PD3,3 - 0 (84k)

PD 3 0 (84t)PD3,4

PD4, M 0 (84m)

PD4 ,2 = 1 (84n)

PD4,3 = 0 (84o)

PD4, 4 = 0 (84p)

Equation 84 represents the partial derivative system for TEm,n (HEm,n)

and TMm,n (HEm,n) modes. Repeating the process for TMo,n and TEM modes,

Eq. 80 produces the partial derivative system,

PD(In) I (85a)I,1 ar r
0*0 0

p.
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PD [k2 k2 ]a 2 + I+ _ (lnc)(85b)1,2 z r a

PD 2,1 (85c)

PD2, 2 -0 (85d)

Similarly for TE modes, Eq. 83 produces the partial derivative sys-

tem,

PD 1 1  10  (86a)

PD 1 2 - [k2 - k] a2 + 1 (86b)

PD 2,1 (86c)

PD 0 (86d)

2,2

With the first order differentlal equation and partial derivative equa-

tion systems constructed, we now turn our attention to initial and

boundary conditions. In each case to follow, we are free to choose the

value of one variable, since it affects only the magnitude of the

results.

Dr
Choosing-F - 1 coupled with the aid of Eqs. 50, 51, and 53, Eq.

e0
75 yields the initial conditions for TEm,n (HEm,n) and TMm,n (EH ) C

modes,

_p I - 37 -

Ja 
'I -k



in- (87a)

Y + (87b)
Y [ o, 

aaI

5 =l (87c)

Y4 =-0 (87d)

where c is the relative permuittivity at the boundary (Fig. 3). The
r

corresponding unnormalized field components are

3D r Y1 C0 (88a)
ar -a

r a (88b)

D -Ye3C (88c)

E - 0 (88d)

For TMO,n and TEM modes, we again choose r 1 and use Eqs. 50b and 51
0

from which Eq. 78 yields

YJ (89a)

Y "2 -l (89b)

-38

' A 11P I'
* -~ *v %

*R e *- *
% ~ % VIA



The corresponding unnormalized field components are

aDr Y10 (90a)

I - a

D Y2C0 (90b)

m o aE
Finally, for TEon modes, we choose 1 and the use of Eq. 50a from

which Eq. 81 yields

Y: -1 (91a)

Y 0 - (91b)

,d''2

The corresponding unnormalized field components are

TE a (92a)

E0 - 0 (92b)

The boundary conditions that must be satisfied at r = c in the

shooting method are taken from Eqs. 50 and 51. For TMo,n and TEM modes,

we have from Eq. 51,

2 (93)

Equation 50a is used for TEO,n modes,
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y 2-0 (94)

2

[YI r + -4 0 (95)J
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1.20 VARIABLES USED IN DCADRE

Initialize variables used in the calling argument of the

integration routine DCADRE.

1.30 SET DEFAULTS

Initialize constants and logicals which are input parame-

ters.

1.40 OPEN NAMELIST AND PRINT FILES

Input variables are read in via the NAMELIST file. The

print file COAD7P is opened.

1.46 CHECK MODE LOGIC

A check is made to ensure that only one mode type is

chosen.

1.47 DIELECTRIC TAPER-,

If desired, a linearly tapered (ielectric profile is con-

structed.

1.50 INITIALIZE DIELECTRIC AND RADIAL ARRAYS

1.52 DEFAULT FOR NJUMP EQUAL TO ZERO

Initialize NJUMP equal to zero. Set default values for

DRATIO(1), AJUMP(1) and IJUMP(l).

1.54 EXAMINE DIELECTRIC PROFILE FOR ANY DISCONTINUITIES

-! Assign appropriate values to pertinent arrays when a dis-

continuity is encountered.

1.59 PRINT OUT PHYSICAL CONDITIONS

Variables representing physical conditions are written to

the output file COAD7P.

..
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1.60 SMOOTH DRELD AND DRELN

Discontinuities, if any, in DRELD and DRELN are removed.

1.65 INITIALIZE DIFFERENCE ARRAYS

1.70 GENERATE SPLINE COEFFICIENTS FOR DRELA AND DRELN

1.90 OUTER LOOP ON MODE NUMBER

This loop evaluates K distinct modes.

2.00 OUTER FREQUENCY LOOP

This loop finds the propagation constant kz at L distinct

frequencies for the kth mode.

2.10 CASE FOR TE0 ,n , TMO,n, OR TEM MODES

The propagation constant kz for the TE,n' or TEM

mode is sought.

2.15 CALL ZREALI

The zero finding routine ZREALI is called.

2.20 CASE FORTE OR TMm mode is sought.ru,n mn

2.30 CALL EO4JBF

Minimization routine EO4JBF is called.

4.00 EVALUATE FIELD COMPONENTS

Depending on the mode type chosen, initial conditions are

4$ set for one of the following pairs of equations:

TE.,n and TMmn modes : equations 87 and 88

TMo,n and TEM modes : equations 89 and 90

TE0,n modes : equations 91 and 92.

4.10 SET UP FOR DGEAR

4' Initialize variables used in the calling argument of the

integration routine DGEAR.
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'pi
h

..15 SET UP FOR NEXT INTEGRATION

Depending on the mode type chosen and if integration is

currently at a discontinuity in the dielectric profile,

compute one of the following cases: I
TE and TM modes : equations 61 and 88
m,n m,n

TM0,n and TEM modes equations 62 and 80

TE modes equations 63 and 82.

4.20 UNNORMALIZED FIELDS

Depending on the mode type chosen, compute the remaining

field components.

4.30 Define difference field arrays for one of the following

mode types:

TEm,n and TMm,n modes : ERD(l), DTD(l), DZD(l)

TMO and TEM modes : ERD(l), DZD(l)

. TE, n modes : DTD(l)

4.45 SMOOTH DIFFERENCE FIELDS FOR SPLINE PURPOSES

If necessary, the difference field arrays will be

"smoothed" for one of the following modes:

TEr,n and Thm,n modes : ERD(l), DTD(l), DZD(l)

TM0,n and TEM modes : ERD(l), DZD(l)

O,n moden: DTD(1).

5.00 CALL NORMALIZING ROUTINE

Normalize field components of a chosen mode type.
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7.00 END OF OUTER FREQUENCY LOOP-

7.20 PRINTOUT RESULTS

For a given mode type, write appropriate results to file

COAD7P.

7.40 PLOT DATA

For a given mode type, plot appropriate graphs of field

components and write to file COAD7P.

7.60 CALL GRAPHING ROUTINE

For a given mode type, appropriate field components are

plotted and hard copy printouts are made.

7.90 END OF OUTER LOOP ON MODE NUMBER

7.95 ORTHOGONALITY CHECK

Orthogonality between two chosen modes is evaluated by

computing Poynting's vector over the cross-sectional area.

8.00 TERMINATION

9.00 FORMAT STATEMENTS

Subroutine DERIV

The integration routine DGEAR calls subroutine DERIV, which

defines and evaluates the derivatives of the second order linear differ-

ential equation system (Eqs. 47 and 48).

2.00 DEFINE DIELECTRIC AND FIRST DERIVATIVE VALUES

This section evaluates FDRV and DREL based on the present

radial position used by the integration routine DGEAR.

I
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2.20 EVALUATE DERIVATIVES

Compute one of the following first order differential I
equation systems for a given mode type:

TEm,n and TMm,n modes : equation 77

TM0,n and TEM modes : equation 80

TE0 ,n modes : equation 83.

8.00 TERMINATION

9.00 FORMAT STATEMENTS

*Subroutine PARDRV

Subroutine PARDRV is also called by the integration routine DGEAR

and it evaluates an N x N Jacobian matrix of partial.derivatives.

2.00 DEFINE DIELECTRIC AND FIRST DERIVATIVE VALUES

This section evaluates FDRV and DREL based on the present

radial position used by the integration routine DGEAR.

2.20 EVALUATE PARTIAL DERIVATIVES

Compute one of the following first order partial differen-

tial equation systems for a given mode type:

TEmn and TMmn modes : equation 84

TMo,n and TEM modes : equation 85

TE0,n modes : equation 86.

8.00 TERMINATION

9.00 FORMAT STATEMENTS

,"
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Function FNCT1

The zero finding routine ZREAL1 calls FNCT1, which defines the

functions for which the roots of the TE0,n, TMo,n (n > 1) and TEM modes

are found.

1.00 INITIALIZATION

Initialize variables used in the calling argument of the

integration routine DGEAR. Also, set initial conditions

for one of the following mode types:

TMOn and TEM modes : equation 89

TEO,n modes : equation 91.

3.00 CALL DGEAR

The integration routine DGEAR is called.

3.50 SET UP FOR NEXT DIELECTRIC SECTION

If a TMO n or TEM mode type is chosen, set equation 73

4% 4.10 DEFINE FUNCTION STATEMENT FNCT1

According to which mode type is chosen, evaluate one of the

following equations:

TMO,n and TEM modes : equation 93

TE0, n modes : equation 94.

8.00 TERMINATION

9.00 FORMAT STATEMENTS

N Function FNCT2

The N dimensional minimization routine EO4JBF calls FNCT2, which

defines the function for the roots of the TEm,n and TMm, n (n 1) modes.

ms n Tmn(n 1- mds
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1.00 INITIALIZATION

Initialize variables uced in the calling argument of the

integration routine DGEAR and equation 87.

3.00 CALL DGEAR

The integration routine DGEAR is called.

3.50 SET UP FOR NEXT DIELECTRIC SECTION

Compute equation 72.

4.10 DEFINE FUNCTION STATEMENT FNCT2

Evaluate equation 95.

8.00 TERMINATION

9.00 FORMAT STATEMENTS

Subroutine NORMAL

Subroutine NORMAL normalizes the field components of a given mode.

2.00 COMPUTE SPLINE COEFFICIENTS

Compute the spline interpolation of the field components

for one of the following mode types:

TEr, n and TMm n modes : E r,EH r,H

TM0, n and TEM modes : Er H

TE0,n modes : E Hr

3.00 TRANSVERSE COMPONENT INTEGRATION

Using the integration routine DCADRE (which calls Function

CXINT), equation 68 is computed.
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4.00 NORMALIZE FIELD COMPONENTS

Normalize the field components of the chosen mode by divid-

ing by the square root of the computed integral in section

3.00.

8.00 TERMINATION

9.00 FORMAT STATEMENTS

Subroutine ORTHO

Subroutine ORTHO computes the orthogonality between two chosen

modes.

2.00 OUTER FREQUENCY LOOP

Compute orthogonality at L multiple friequencies.

3.00 INNER LOOP TO EVALUATE ORTHOGONALITY BETWEEN TWO MODES

Determine which pair of modes (K1 ,K2) are to be evaluated.

4.00 COMPUTE SPLINE COEFFICIENTS

Compute the spline interpolation of the field components

for one of the following mode types:

TEm,n and Thmn modes : Er EH r,H

TM0,n and TEM modes : Er ,H*

TEo,n modes : E ,Hr-

5.00 TRANSVERSE COMPONENT INTEGRATION

Using the integration routine DCADRE (which calls Function

CXINT) on equation 68, orthogonality is computed.

6.00 END OF INNER LOOP

7.00 END OF OUTER.LOOP
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8.00 TERMINATION

9.00 FORMAT STATEMENTS
.9.0

Function CXINT

Function CXINT is called by the integration routine DCADRE and

defines the argument of Eq. 68.

2.00 EVALUATE SPLINE COEFFICIENTS

Evaluate the spline coefficients for the field components

of one of the following mode types:

Tm,n and TMm,n modes : E ,E,,H ,H

TM and TEM modes : E ,H
TO'n r *

TE0,n modes :E,H. -

3.00 DEFINE ARGUMENT FOR NORMALIZATION

Based on whether k z is real (propagating) or imaginary

(nonpropagating). compute one of the following arguments

for equation 68:

k z real : ErH EfH

kz imaginary : EH - ErH

4.00 DEFINE ARGUMENT TO COMPUTE ORTHOGONALITY

Compute arguments of equation 68 based on one of the fol-

lowing cases:

4.10 MODE I PROPAGATING, MODE 2 PROPAGATING

k zkfor both modes is real; define E H - E Hr

4.20 MODE I PROPAGATING, MODE 2 CUTOFF

k2 for mode 1 is real and imaginary for mode 2; define

Ecr - ErH
E*Hr Er H

i. -50- I
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4.30 MODE 1 CUTOFF, MODE 2 PROPAGATING

kfor mode 1 is imaginary and real for mode 2: define

4.40 MODE I AND MODE 2 CUTOFF

k- kis imaginary for both modes; define E H- E rHK

8.00 TERMINATION

9.00 FORMAT STATEMENTS

Subroutine DPLOT

Subroutine DPLOT generates the field plots for a given mode which
t%

can be processed into making hard copy printouts.

4.2 Process for a General Dielectric Profile

1 ~ ~ The two major tasks in the program concern finding the propagation

constant k z (and where appropriate, cl) and corresponding field compo-

nents for a desired mode. To accomplish this. the second order differ-

ential equation system (Eqs. 47 or 48) must be integrated in the radial

~~coordinate across the dielectric profile. For a dielectric profile free

of any discontinuities, there is a single integration from the inner to

*outer conductor radius. If there are N discontinuities, then integra-

tion must be performed N + 1 times.

The dielectric profile is originally defined at discreet points.

As the integration is being performed from the inner to outer conductor

radius, a point may be cLhn'zn ty the integration routine at which the

dielectric is not defined. Thus, before the integration is carried out,

cubic spline interpolation is performed to generate a smooth curve for

N..
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the dielectric. A discussion involving the theory of cubic splines used

in the program is presented by de Boor.4  The interpolatory subroutines

used are presented in Appendix A (Section A.5). Once the interpolation

has been completed, integration may proceed as before. For a dielectric

profile free of any discontinuities, the standard cubic spline interpo-

lation is performed. If the dielectric profile is discontinuous, the

standard spline approach generates a large "ringing" in the vicinity of

the jump. The approach taken in solving this problem is described in

Appendix C.

Once kz has been determined for a given mode, the field components

as a function of r need to be generated. The integration routine used

to integrate the field components from the inner to outer conductor is

the same as that used in the "shooting" method to find kz (and a).

Again, cubic spline interpolation must be used on the dielectric profile

in order to carry out the integration.

4.3 Finding a Mode

In order to find the mode propagation constant kz and resulting

field patterns for a given mode, an initial guess for k must be pro-
9,
",, vided. Whenever a dielectric different from air is introduced into a

waveguide, the cutoff frequency of a given mode is lowered with respect

to that of air. This is due to the fact that electromagnetic waves

travel at a reduced velocity governed by the following equation:

c = r (96)

- Fr
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where

c= speed of light in dielectric

co  speed of light in air

E r relative dielectric permittivity

With this fact in mind, the initial guess for k z falls between the

values of kzin the limiting cases of C r1 = C r2 1 (air) and c ri - Cr2

= desired relative dielectric permittivity,

kza < kzg < kzh (97)

where

kza mode propagation constant for c = r2 = 1

kzh = mode propagation constant for rl = £r2 = desired dielectric

value

As mentioned in Section 3.2, an additional guess for the dimensionless

parameter a is required for TEmn (HEm,n) and TMm,n (EH m,n) modes.

To evaluate the geometry of Fig. 3A for a chosen dielectric pro-

file, one must "build up" to the final desired dielectric profile. This

is achieved by starting with Crl = Cr2 " 1 and gradually perturbing the

system by increasing the value of cr1 and/or er2* This is schematically

shown in Fig. 4. The initial guess for kz at the Mth step is based on

Eq. 97, where kzh is the mode propagation constant for the homogeneously

filled coax with the current dielectric value. For the m * 0 modes, the

initial guess for a at the Mth step is set equal to the final value from

, the previous step,I
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' 1
J*

I'

I . rl = Er2 =1

rlN rMID rOUT

S~4 r1 '

_p

! .;

"rlN rMID rOUT-

f rr

~er2

rlN rMID rOUT

IiI.~Fig. 4. "Build up" process to evaluate the two dielectric profile..,
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OL = (98) "

M M-l (98)

When m 0 0, a one-dimensional zero finding routine (ZREAL1, Section A.2)

is used to find the zero. When m 0 0, a two-dimensional minimum finding

routine (EO4JBF, Section A.3) is used to find the minimum. In this

second case, a relatively poor initial guess for kz or a will nudge

EO4JBF towards an undesired minimum. In particular, the initial guess
46%

for a was critical. This result was found empirically by running the

program and observing the affects of varying a. Conversely, for the m

0 cases, the initial guess for kz was not as critical.

To have any confidence that the final value of kz at the Mth step

represents the desired mode, certain conditions are examined. The first

condition requireo that kz fall between the limits- of kza and kzh, as

specified by Eq. 97. If this is not the case, then the program has

unwittingly "walked" to another solution. The next check involves

examining the evolution of the field plots from the air filled case to

*" the present dielectric profile. Characteristics which should be scruti-

nized include:

1. The number of zero crossings

2. Conformance to the boundary condition that the tangential

components of the electric field E and the normal components

of the magnetic field H at r - a and r - c are zero

3. Relative magnitudes of similar field components

4. Poynting's vector

The last major criterion to be satisfied is orthogonality, which is TI
*. computed between the current mode of interest and another conveniently

chosen mode. i

,: - ss -
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V. PRESENTATION OF RESULTS

The geometry of Fig. 3A was examined for the following modes:

TM, TEO',, TEM, TM1 I EHI, The dimensions, dielectric profile

values, and frequency used for each mode were

a 1.0 cm

.1 b 1.5 cm

C = 2.0 cm

Crl m 1.0, 2.0

E Cr2 m 1.0

There are two cases presented for each mode:

Case 1: c rl Cr 2  1.0

Case 2: C - 2.0, c - 1.0

Both cases were evaluated at 32 gigahertz (GHz). For clarity, region 1

will refer to the dielectric region of C rl, and region 2 will refer to

the dielectric region of Cr2 *

The total number of points at which the dielectric profile was

defined was 46. The points were equally spaced, except in the neighbor-

hood of the discontinuity (b - 1.5 cm). Here, points were concentrated

in an effort to increase the accuracy of the integration and when nor-

malization and orthogonality were computed. In determining the optimum

number of points to use, consideration had to be given to the cost,
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p
time, and numerical accuracy desired. The number of points chosen, 46,

gave good numerical accuracy while keeping the time and cost to a mini- "°1
mum. Appendix E lists the values of the individual points.

Before proceeding, the results for each mode are presented below

(Cr2 is always equal to 1).

Mode Crl  k (meters- I)

TM0, 1.0 592.99

2.0 681.37

TEoi 1.0 589.09

2.0 819.66 
0

TEM 1.0 670.89

2.0 916.37

TMI, 1  1.0 589.84 -3.72 E-8

EH 1,1 mode 1 2.0 678.27 -7.33 E-2

EHI,1 mode 2 2.0 815.32 -4.11

Sections 5.1 through 5.4 will compare/constrast the field component j
plots for the TMo. I TE0 ,1 ' TEM, and TM, 1  (EH ,1 ) modes, respec-

tively. Computation of orthogonality will be presented in Section

5.5. Two dispersion plots will then be presented and discussed in

Section 5.6. Finally, Section 5.7 will show the effects on the propaga-

tion constant kz as the dielectric ratio of C to E is varied.

zri r2
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5.1 TM 0 11 Mode
The effect of the discontinuous dielectric profile at r -b is

readily apparent in Fig. 5 for Er Notice that the magnitude of E r

doubles (as required for an inner to outer dielectric ratio of two)

along with the fact that the field lies primarily in region 2. As with

the air filled case (Fig. 6), there is one zero crossing in each case.I

The E z component distribution has evolved from being almost syrn-

metric (Fig. 7) to primarily concentrated in region 1 (Fig. 8). Note

that Ez is continuous at r - b (Fig. 8), but its first derivative with

resectto isdisontnuos. The boundary condition that E~ be equal

to zero at r - a and r - c is satisfied in both plots.

Figures 9 and 10 depict the H component for cases 1 and 2,

respectively. Case 2 (Fig. 9) shows H continuous at r - b, with the

overall field distribution primarily in region 1 (as with Fig. 10).

Poynting's vector shows that for case 2 (Fig. 11), the energy

resides primarily in region 2, implying that most of the mode propagates

in this region. This boldly contrasts the energy distribution for case

1 (Fig. 12), which is slightly larger for region 1.

~,. ,~., 
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5.2 TE0  Mode

The E component shows that the field has shifted primarily to

region 1 (Fig. 13) from what was almost a symmetrical distribution (Fig.

14). In both cases, E is equal to zero at r = a and r - c, and is

continuous at r - b. 9 II
The Hr component is similarly affected in that most of the field

lies in region 1 (Fig. 15) in contrast to the air filled case (Fig. e

16). The boundary condition that Hr be equal to zero at r - a and r - c

is satisfied in both plots.

The Hz component for case 2 (Fig. 17) continues the trend toward

concentrating in region 1. Although continuous at the dielectric dis-

continuity, the first derivative of Hz with respect to r is discontinu-

ous. Also, there is one zero crossing, as with the air filled case

(Fig. 18).

Poynting's vector for case 2 (Fig. 19) shows that the majority of

the energy is in region 1 compared with the almost symmetrical distribu-

tion for case 1 (Fig. 20). Consequently, the TE0,1 mode for the dielec-

tric profile of case 2 Propagates primarily in region 1.
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5. 3 TEN Mode

Comparing Figs. 21 (case 1) and 22 (case 2) for the Er component

reveals that a greater percentage of the field lies in region 1 for case

2. The appropriate discontinuous Jump at r - b is satisfied for case 2. ...

Theoretically, the TEM mode has no E (or H z component when -.

0 -rl E r2 - i. Figure 23 shows values for the air filled case which,

althlugh not exactly zero, are very small and reflect the accuracy of

the program. But, the values for Fig. 24 show unquestioned existence of WI

ri
t te E z component when E rl a2. Here. a peak Is reached at the dielec- ,

tri( interface (r - b) where the field is continuous, but its first

derivative with respect to r is discontinuous. An required E z is zero

~ at r - a and r - c.

The H 9component shows an increased concent -at ion in region 1

Pig. 2 ) relative to that of the air filled case (Fig. 26). At r -

" b. H is (ontiruous, although its first derivative with respect to r is

disaontinuous. '.

Pjyntirig's vector shows how the mode has evolved into propagating

" almost entirely in region I (Fig. 27) compared to that of the air filled

tase (Fig. 28).
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FIS. 23. rI1M mode at 32 G~z, IU-1;H component.
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- - 82 -



TEM MODE AT 32.0 GHZ. ER1-2

0 PUYNTING'S VECTOR- ERHT

m - -83

% %

.1' -- -

'p%



TEII MWOE 19T 32. 0 GHZ. E1 -1
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Fig. 28. TEM mode at 32 CHX, ElI 2; Poynting's vetctor ErH#.
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5.4 T4 EH M~ode

°° •~

Here, there are two sets of answers when E - 2 signi'ving a

split of the TM mode upon hybridization. The plots for the hybric

ized modes are labeled EH mode 1 and EH1  mode 2 corresponding to

the k values of b78.27 and 815.32, respectively. In the discussion, wt

"% will simply refer to them as mode I and mode 2.

The Er component for modes I and 2 kFigs. 29 and 3,, respectivelv

undergoes the required jump at r - b by doubling in magnitude. Both

modes have one zero crossing, as with the TM1  mode (Fig. 3. But,

mode 1 has its field distribution concentrated in region 2, while mode 2

has its field almost entirely in region 1. Note that the Er component

for mode I is from one to two orders of magnitude larger than mode 2

over most of the radial cross section.

The azimuthal electric field, E, foT mode I tFig. 32) has evolved

into two positive peaks compared to the one positive peak for mooe £

(Fig. 33). Both modes 1 and 2 have their fields concentrated in reg!on

1, as with the TM,, mode (Fig. 34). In all the plots, E is continuous

at r - b and is zero at r - a and r - c. We further note that the E

component for mode 2 is one to two orders of magnitude larger than mode:

over the radial cross section.
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EH 11 MODE 2 AT 32.0 GHZ, ERI-2

RIRL ---ELECTRIC E FIELD

%40

:.

',.3 9.0£'0 1.0-2 .- 1£- 2 -.0-2 2.tE0

' " MRAIFL POSITION -11'TERS-

Fig. 30. TI,1 1 mode at 32 GHz, E.1 - 1;E component.
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TM 11 MOOE AT 32.0 GHZ, ER1-1

GRADIAL ELECTRIC E FIELD

4 - --,,,

8- -

9.OOE-03 1. 2C-02 1. SOE-02 1.80E-02 2. 1OE-02 2. 1O-02
RADIAL POSITION -MIETERS-

* Fig. 31. THI, 1 mode at 32 GHz. ER1 - 1; Ez component.
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EH 11 MOOE 1 19T 32.0 GHZ, R1-2

o ~RZIMUTHAL ELECTRIC E FIELD

+

".OOC-O 1.=-02 1.SG-02 1.8E-02 2.10e-02 2. ,0E-02
RFIAL POSITION -TERS-

Fig. 32. TMI,1 mode at 32 G~z, ERI - 1; Hr component.
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EH 11 MODE 2 fiT 32.0 GHZ, ER1-2

o AZIMUTHAL ELECTRIC E FIELD

9.OOE-03 1.20E-02 1.SOE-02 1.80E-02 2. IOE-02 2. IOE-02
RADIAL POSITION -METERS-

Fig. 33. Th 1 1l mode at 32 G~z, ER]. 1; H component.
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IM 11 MODE AT 32.0 GH7. ER1-1

AZIMUTHAL ELECTRIC £ FIELD

C4

9. OOE-03 1. 20E-02 1. SCE-02 1. B0E-02 2. IOE-02 2. 4OE-02
RIXM POSITION -DIETERS-

Fig. 34. TMn, 1 mode at 32 GHz, £3.1 1; Hz component.
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The EZ component shows that for both modes 1 and 2 (Figs. 35 and

36, respectively), the field resides primarily in region 1. Note that

mode 1 goes through a zero crossing. Along with the in1,1 mode (Fig.

37), all three plots satisfy the boundary condition that Ezbe equal to

zero at r - a and r - c as. well as being continuous at r - b. We again

point out that mode 1 is an order of magnitude larger than mode 2 over

the radial cross section. This is consistent with the fact that the

magnitude of a (Eq. 49) for mode 1 is less than that for mode 2, result-

ing in Ez being larger for mode 1.

Figures 38, 39, and 40 show the Hr component f or the TM mode,

mode 1 and mode 2, respectively. We note the field distribution having

an increased concentration in region 1 for modes 1 (which goes through a

zero) and 2. The Hr component for mode 2 is as much as two orders of

magnitude larger than mode 1 over the radial cross section. At r - a

and r -c, Hr is equal to zero for all three modes, as required.

As with the Hr component, H shows a majority of the field resid-

ing in region 1 for modes 1 and 2 (Figs. 41 and 42, respectively). Note

that mode 2 does not have a zero crossing unlike mode 1 and the TM 1

mode (Fig. 43). All three modes are continuous at r -b. Here, the H.

component for mode 1 is an order of magnitude larger than mode 2 over

the radial cross section.
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EH 11 MOOE 1 T- 32.0 GHZ, ER1-2

AXIAL ELECRIC E FIELD
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_ Fi. 35.THI, 1 mode at 32 GHz, ERI 1; Poyntlng's vectorEr .
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TM 11 MODE AT 32.0 GHZ, ER1-1 -5

A9XIAL ELECTRIC E FIELD
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9. -31. 2CE-02 1.SOE1-M 1. S1E-02 2. 1 E-02 2. IOE-02
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Fig. 37. EHI,, mode I at 32 GHz, ERI 2; Er component. P, A-
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TM 11 MOOE AT 32.0 GHZ, ERI-I

S R~RDIAL MAGNETIC H FIELD

C4

* I.

9.OOC-O ~ 1. 20E-02 I.SOE-02 1. Ocx-0 2. 1 OE-0 2. IOC-0
* ,,MO POITION -CTERS-

Fig. 38. EI1 1 mode 1 at 32 Gz, Ell 2; E component...
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EH 11 EIODE I AT :32.0 GHZ. EIR1-2

RRDIAL MflGNETIC H FIELD

" P

• ., _

.' Fig. 39. EHIl mode I at 32 GHz, ER1. 2; Ez component. -
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EH 11 MODE 2 AT 32.0 GHZ. ER1-2

. RADIAL MAGNETIC H FIELD

S. OOE-030 1. 20-0 ISO-02 1. SM-02 2. 1 OE-02 2. iOE-02
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Z.2ZFig. 40. EHI I mode 1 at 32 GHz, ERI -2; H r component.
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EH 11 MODFE I A9T 32.0 GHZ, ER1-2

AZIfMUTHRL RMGNETIC H FIELD
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9.0£1" . 2O012 1.501E-02 1.80£'-0 2. 10E-02 2. IOE -0"2

RRD13IRL POSITION -METERS-

YFig. 41. EHl I mode 1 at 32 GHz, ER1 2; H component.
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EH 11 MODE 2 AT 32.0 GHZ, ERI-2%

o AZIMUTHAL MAGNETIC H FIELD
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9.O(C-O3 1. 2OC-02 1.50E-02 1.80E-02 2. IOE-02 2. IOE-02
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Fig. 42. EHi1 mode 1 at 32 0Hz, ER. 2; H2 component.
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TM 11 MODE AT 32.0 GHZ, ERI-1

AZIMUTHAL MAVGNETIC H FIELD

4

-"91 -03 1. 20E-0'2 L.SO--02 1. 8CX-02 2. IOE-O2 2. 4OE-0"2
~~RIAL POSITION -METEI'RS-

-- " " Fig. 43. EHI, 1 mode 1 at 32 GHz, ER1 2; Poynting's vector ErH€
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The fact that the magnitude of a is larger for mode 2 than for

mode 1 is evidenced in the HZ component (Figs. 44 and 45. respectively).

The field distributions are both concentrated in region 1, but the mag-

nitude of H Z for mode 2 is larger. Along with the TM11l mode (Fig. 46),

all three modes have one zero crossing and are continuous at r - b.

Finally, the overall affects of the dielectric profile on modes 1

and 2 are summarized by examining the cosine (E rHI ) and sine (E 0H d

terms of Poynting's vector. The cosine term for the TM1,1 mode (Fig.

47) shows initially that most of the energy lies in region 1. The sine

term for the TM,,, mode (Fig. 48) shows a slightly greater concentration

of energy in region 1. Similar to the TM1 1l mode, the cosine term for

mode 2 (Fig. 49) has an even larger fraction of energy residing in

region 1, and its sine term (Fig. 50) has almost all of its energy in

region 1. However, mode 1 shows behavior that contrasts that of the

TM1,, mode and mode 2. Figure 51 for mode 1 shows that the majority of

the cosine energy term resides in region 2. The sine term of mode 1

(Fig. 52) has its energy primarily in the peak of region 1, but the

magnitude is negative.
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EH 11 MODE 2 RT32.0 GHZ. ER1'-2

AXIAL MIAGNETIC H FIELD

+ 0

9. OEC-03 1. 20E-02 1. SOE-02 1. 80M-02 2. IOE-02 2. IOE-O'
RF131FL POSITION -MECTERS-

Fig. 44. EH1 ,j mode 1 at 32 GHz, ER. 2; Poynting's vector E H*r
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EH 11 MOOE 1 AT 32.0 GHZ, ER1-2

AXIAL MGNETIC H FI ELD

9.0-03 1 20-02 1 • 0-02 1. SOC-02 2. IE-02 2. IOE-02
RRIAL POSITION -IETERS-

Fig. 45. ER,1 mode 2 at 32 GHz, Eli - 2; Er component.
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TM 11 M0OC AT 32.0 GHZ, ER1-1

AX IAL M1 NETIC H FI.ELO

I, | /,

//';

S.OO--03 1. 2bE-02 1.SbE-02o 1.8E-02 2. IbE-02 2. IOE-02
RAIAiL POSITION - ETERS-

*; Fig. 46. EHI,,, mode 2 at 32 GRz, ERI - 2; E component.
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TM 11 MODE AT 32.0 GHZ, ER1-1

POYNTING'S VECTOR- ERxHT
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* 9.OO--0"5 1.20E-02 1. S01-02 1.80EZ-02 2.10{:-02 2.4OC-,02
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Fig 47. EH, 1 mode 2 at 32 GHz, ERI - 2; Ez component.
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TM 11 MODE AT 32.0 GHZ, ER1-l

a POYNTING'S VECTOR- ETHHR

m -a -

-4.4

Ca4

9.OOE-"3 1.2iC--02 1.SOc-02 I.80c-02 2.1O-02 2.4O-02
R. R L POSITION -METERS-

Fig. 48. EHI, 1  mode 2 at 32 GHz, ER. - 2; Hr component.
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EH 11 MODE 2 AT 32.0 GHZ, ERI-2

POYNTING"S VECTOR- ERxHT
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RFN318L POSITION -METERS-

4-. '€€ Fig. 49. EHI , , mode 2 at 32 GHz, EP1 2; , o moet

' - 108 -

NA-a 
.

-4 ' ,'



ClH 11 MODE 2 iT 32.0 GHZ, ER1-2

POYNTING'S VECTOR- ETxHR

"9.OOE -03 1. 2fl-02 1. SbE-02 I. aix-02 2. IOE-02 2. t0E-02
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Fi. 50. EHI L mode 2 at 32 GHz, gE.I 2; H z component.
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From examining the field component plots and the sine and cosine

Poynting vector components (which combine to represent the total net

flow of energy), we note that the TM1,1 mode and mode 2 have similar

characteristics. While mode I is also similar to the TM1 1, mode in some

respects, its energy distribution is quite different. Since sine and ft

cosine are functions which are 90 degrees out of phase, there will be

(for a given cross-sectional plane) points in the azimuth where cosine

is zero and sine is not. Although the majority of energy for mode 1

propagates in region 2 in the +z direction, there are locations in the

cross-sectional plane where there is a net flow of energy (-1.0 E-4) in

the -z direction (as a result of the sine-cosine relationship). This

behavior is analogous to the "back eddys" created from water flowing

through a pipe containing obstacles. Unlike mode 1, the energy for the

TMI I mode and mode 2 propagates primarily in region 1 in the +z direc-

tion.

5.5 Evaluation of Orthogonality

Sections 5.1 through 5.4 presented the values for kz, a (where

appropriate), and field plots for the given modes. With every mode, kz  -

for the dielectric profile of E - 2 (E - 1) was larger than that for
ri rl

the air filled case. This is consistent with Eq. 97 of Section 4.2.

From Section 5.4, the magnitude of a showed that significant hybridiza-
tion had occurred for modes 1 and 2. The fact that a for the TM! 1 mode

was finite (but very small) reflects the numerical accuracy of the

program. The boundary conditions at r = a and r - c for the tangential

electric field and normal magnetic field components were satisfied for

-112-
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all the modes examined. The boundary condition that Er jump by a factor

of two (ratio of crl to C r2) at r - b for case 2 was also satisfied.

Poynting's vector has shown for each mode that a discontinuous dielec-

tric profile shifts the majority of energy to one of the two regions.

Thus, as previously noted, the mode propagates primarily in one

region. One further aspect that must be examined is whether the modes

in question are orthogonal.

Orthogonality was computed between the following pairs of modes:

TEM and TM0 ,1 ; TE0 ,1 and TE0 ,2 (chosen for convenience); EHR.1 mode 1,

and EH1,1 mode 2. The results of Eq. 68 (Section 3.5) for each pair are

presented under columns 2 through 5 where the mode before the backlash

contributes the Er and E components and the mode following the backlash

contributes the H and H components:

TEM and TM0 ,1

C rl TEM/TEM TEM/TM ,i TM ,i/TEM TM 01h

1.0 1.0 1.22 E-7 1.08 E-7 1.0

2.0 1.0 5.36 E-6 3.56 E-6 1.0

TEoI and TE 01

4, TEoI/TE0  T /TEO TE /TE TE ITE
. rl i , 0,1 2 0.2 01 0 ,2 2 0,2

1.0 1.0 3.32 E-7 8.62 E-7 1.0

2.0 1.0 -2.47 E-6 -4.39 E-6 1.0
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EH Mode and EH Mode 2

Crl Mode l/Mode 1 Mode 1/Mode 2 Mode 2/Mode 1 Mode 2/Mode 2

2.0 1.0 2.87 E-6 1.94 E-6 1.0

Theoretically, if two modes are orthogonal, then Eq. 68 is exactly equal
'J.

to zero. The results show that for each mode pair, the computed values

of orthogonality are very small for both values of eri Furthermore,

columns 2 and 5 (which represent computation of self orthogonality) have

the value of 1 for each case of Crl, as expected. In light of these

results, we conclude that the modes TM0 1 , TE0 ,1 - TEM, EHM, 1 mode 1, and

EH1,1 mode 2 are valid.

5.6 Dispersion Plots

Two dispersion plots, w versus kz, are presented in this section

for the following conditions:

Crl 2 e rl I

Frequency range : 1.0-34.0 GHz

Figure 53 is a plot of the TMO,1 , TE0 ,, and TEM modes, and Fig. 54 is a

plot of the modes EH, 1 mode 1 and EHI 1 mode 2. In each plot, the y

axis (w) has been normalized by dividing by the speed of light in

vacuum (cO) and multiplying by the radius of the dielectric interface, b

(b - 1.5 cm). Upon multiplying the x axis (k ) by b results in both

axes being dimensionless and of the same order of magnitude. Thus, the

a..
-114 ..
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DISPERSION OF" STEPPED DIELECTRIC PROFILE

- -. EH1  MODE 1 AND EHl MOOE 2
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Fig. 54. Dispersion ffor a stepped dielectrc:
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x and y axes are labeled kzb and kb (where k - wc ), respectively. A

negative value of kzb represents the propagation constant when it is

cutoff (imaginary).

Beyond a certain frequency for a given mode, both plots reveal

propagation between the two velocity of light curves v - co and v - cE

(for the dielectric profile of Cri Cr2 2). For the mode in ques-

tion, this implies that the fraction of the total energy which propa-

gates in region 2 is a slow wave mode (below v -c 0 ) and the remaining.

energy which propagates in region l is a fast wave mode (above v - c ).

Thus, the mode propagates with an overall kz that lies between the kz

for the air filled region (region 2, v - c) and the kz for region

2 ( rl- 2, v - c). This is precisely Eq. 97 presented in Section

4.2. Hence, the dispersion plots reinforce the validity of the modes

examined for the dielectric profile of Cr 1 W 2 and Cr2 = 1.

A connection can be made between the asymmetric behavior of the

mode as the frequency goes to infinity with the distribution of the

energy from the analysis of Poynting's vector. For a mode that is

concentrated in the dielectric (TEO,, TEM, EH I1 mode 2), the disper-

sion should approach the v - c line. Conversely, for a mode that is

concentrated in the vacuum region (TM0,1 , EHI, 1 mode 1), the dispersion

should approach the v - c0 line. This appears to be the trend for the -4

data in Figs. 53 and 54.
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5.7 Effect of the Dielectric Profile on k

The effect on the propagation constant k by varying the dielec-

tric ratio of Cr1 to Sr2 from one to two at 32 gigahertz, is examined in

.5this section. As in Figs. 53 and 54, kz is normalized by multiplying by

b.

Figure 55 shows how modes 1 and 2 split as the dielectric ratio

. increases. Although the modes are orthogonal to one another at each

value of the dielectric ratio, there is generally a slow increase in the

magnitude of the computed values as the ratio becomes larger.

/e r2

ri r2 Mode l/Mode 1 Mode l/Mode 2 Mode 2/Mode 1 Mode 2/Mode 2

1.2 1.0 -5.10 E-8 -2.80 E-8 1.0

1.3 1.0 2.51 E-8 4.61 E-8 1.0

1.4 1.0 3.58 E-8 4.51 E-8 1.0

1.5 1.0 9.50 E-8 1.04 E-8 1.0

'S 1.6 1.0 1.20 E-7 1.32 E-7 1.0

1.7 1.0 1.14 E-7 1.45 E-7 1.0

1.8 1.0 1.82 E-7 2.35 E-7 1.0

1.9 1.0 1.86 E-7 2.53 E-7 1.0

2.0 1.0 2.87 E-6 1.94 E-6 1.0

This degradation is principally due to the "ringing" which becomes

larger at the dielectric discontinuity. The consequence is an increase

in the errors of the solutions which, in turn, affects the orthogonality

computations.
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VI. CONCLUSION

6.1 Advantages and Drawbacks

The direct integration approach formulated in Chapter 3 has vari-

ous advantages over the traditional modal expansion. First, the TEM

mode can be examined for a discontinuous dielectric profile (as was done

for Fig. 3A). The second order differential equation systems for the

m * 0 and m - 0 modes (Eqs. 47 and 48, respectively) were derived inde-

pendently of the dielectric profile. As a result, each differential

equation system can evaluate a general dielectric profile (which could

be a combination of stepped and linearly graded sections). This charac-

teristic is quite unlike the modal expansion approach where the size of

the dispersion determinant varies as the square of the number of steps,

and therefore the determinant grows in complexity and size in accordance

with the complexity of the profile. Unlike the dispersion determinant,

Eqs. 47 and 48 involve no Bessel functions. Hence. the computer program ."7

does not have to evaluate Bessel function expansions, therefore allowing

the investigation of modes that are near cutoff (nonpropagating). The

success of this technique is illustrated by the solutions obtained in

*, Chapter 5.

As noted in Section 4.3, the m * 0 modes (TEm,n and TMm,n modes)

had a tendency to "walk" to an undesired solution for kz and a if the

*initial guesses were relataively poor. Also, the time involved in

finding a solution to an m * 0 mode was a factor of five or more slower

than the m = 0 modes.
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6.2 Future Goals and Applications

The formulation in Chapter 3 was derived with the permeability of

. the dielectric to be that of air (u0 ). A natural extension would be to

incorporate a permeability profile p(r). Also of interest would be the

addition of a complex permittivity e * (r) to the formulation and inves-

tigating the complex propagation constant k for various lossy dielec-

tric profiles. Finally, work needs to be done on the zero finding logic

to improve the speed of convergence of kz for a for the m *0 modes.
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APPENDIX A

NUMERICAL SUBROUTINES

The following subroutines were provided by the IMSL 5 and NAG 6

libraries, which are collections of mathematical and statistical sub-

routines written in FORTRAN. Following the name of each routine will be

the library from which it was taken.

-", The routine DGEAR is used to integrate the second order differen-

tial equation systems (Eqs. 47 and 48). The zero finding in the shoot-

ing method is performed by ZREALI and EO4JBF. Evaluating the integral

(Eq. 68) of the solutions to perform normalization and the orthogonality

tests is carried out by DCADRE. The routines ICSEVU and DCSEVU are used

as utilities to generate and evaluate spline approximations to the given

dielectric profile and the final solutions to the field components.

A.1 DGEAR (IMSL)

This routine is used to integrate Eqs. 47 and 48 in the "shooting

method." The solution to a system of first order ordinary differential

equations of the form y' - f(x, y) with initial conditions can be solved

p. i by DGEAR. The basic methods taken in obtaining solutions are of the

implicit linear multistep type. There are two classes of such methods

available to the user. The first is the implicit Adam's methods (up to

order twelve), and the second is the backward differentiation formula

methods (up to order five) also known as Gear's stiff methods. We used

the second method. With either case, an algebraic system of equations
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must be solved 'at each step where a variety of corrector iteration

methods are available for use.

To evaluate the first order differential equation system, DGEAR

must call on two subroutines provided by the user. The first sub-

routine, DERIV, defines and evaluates the first order differential

equation system Y YI, ... , Y' given N (the number of first order dif-

ferential equations), x (the values at which to evalute the equations,

and YI, Y2 ... I Yn (the integration variables). The second subroutine,

PARDRV, defines and evaluates the Jacobian matrix of partial deriva-

tions.

A.2 ZREAL1 (IMSL)

The routine ZREALl is used to find the zero for the TEM, TMO,n ,

and TEOn type modes. This routine finds the N real zeros of a single

argument, real function subprogram F(X) which is supplied by the user.

Upon supplying X with N initial guesses X1, X2, ... Xn , the subroutine

uses Muller's method to locate the N real zeros of F(W). The solutions

to F(X) - 0 are returned in X.

A.3 EO4JBF (NAG)

The routine EO4JBF is used to find the minimums (k and a) for

TMm,n (EHmn) and TEm,n (HEm,n) type modes. This routine employs a

* comprehensive quasi-Newton algorithm for finding:

1. An unconstrained minimum of a function of several variables.

2. A minimum of a function of several variables subject to fixed

upper and/or lower bounds on the variables. No derivatives
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are required, but the user may specify continuous first and

second derivatives (the routine will usually work when there

are occasional discontinuities). '

A function of N variables F (x1, x2 , 2' ' x n is minimized subject

to the constraint,

Lj j j

for j - 1, 2, ... , N, where L is the lower bound and U the upper

bound. The user must specify a starting point and an external function

subroutine FUNCT to calcualte the value of F(X) at any point X in N

dimensional space, where X (xI, x2 , ... , X). The function subroutine ,

FUNct defines and evaluates the function which is minimized,

FC - F(XC(l), XC(2), ..., XC(n))

where XC is an array of dimension N, which contains the current point of

evaluation. Special variables that need to be defined are:

STEPMAX -- specifies an estimate of the Euclidean distance between

the solution and starting point

FEST -- specifies an estimate of the function value at the

minimum

IBOUND - specifies whether the problem was constrained or

bounded

BL -- array of dimension N containing the fixed lower bounds I;
-125-
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BU -- array of dimension N containing the fixed lower bounds

U4 U_

The user must also supply the subroutine MONIT with proper parameter

list. If desired, MONIT can be used to monitor the minimization

process. Subroutine EO4HBF (from the NAG library), which computes the

finite difference intervals for input to EO4JBF, was modified. Nor-

mally, using machine accuracy in its computations, the accuracy of

EO4HBF was altered to that used in subroutine DGEAR.

A.4 DCADRE (IMSL)
'"

The routine DCADRE is used to integrate the solutions to Eqs. 47

and 48 to normalize the field components and to check orthogonality.

Numerical integration of a function using cautious adaptaive Romberg

extrapolation is performed. In many instances, DCADRE can handle jump

discontinuities. The user must supply a single argument, real function

subprogram F(X).

A.5 ICSCCU, ICSEVU, DCSEVU (IMSL)

The routines ICSCCU, ICSEVU, and DCSEVU are presented together,

since they are all involved in the cubic spline interpolation of a given

set of points. The interpolatory approximation to a set of points by a

cubic spline is performed by ICSCCU. The endpoint conditions are deter-

mined automatically. Input to the routine requires the number of points . -

N, a set of points xi, where xi < xi+l for i = 1, 2, ... , N, and a

corresponding set of yi (functional) values for i - 1, 2, ... , N.

Evaluation of the spline coefficients generated by ICSCCU is performed
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by ICSEVU. Input to this routine requires the set of spline coeffici-

ents and points where the spline coefficients are to be evaluated.

Evaluation of the first and/or second derivatives of a cubic spline is

performed by DCSEVU. Input to this routine requires the interpolated

spline coefficients and the points at which the first and/or second

derivative should be evaluated.

-

'I.

U,,
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SAPPENDIX B

NAMELISTS

The folowing namelist definitions are input variable files that

the user specifies before the program is executed. Before proceeding,

we define the index variables used in the arrays:

I radial position

3 -- mode

K -- mode

L -- frequency

NLORTHO - orthogonality control

Variable Name Default Function

LORTHO FALSE Subroutine ORTHO activated

LTEST(J,K) FALSE Compute orthogonality between modes J, K

NLFRE -- frequency data control

FRQLOW 8.0 E+9 Frequency at low end of desired band

FRHIGH 12.0 E+9 Frequency at high end of desired band

NFRE 1 Number of frequencies at which to evalu-
ate desired modes

NLGEO -- geometry and dielectric control

RIN 1,0 E-2 Inner conductor radius (meters)

RMID 1.5 E-2 Radius of inner dielectric region
(meters)

NPTST Number of points at which the radial
profile is defined
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DRELT(1) Value of relative dielectric permittivity

at ith radial position

XPAT(l) --- Radial position of ith point (meters)

LTAPER FALSE Generate a linearly tapered dielectric
profile

NLMOD -- mode control

MC1MX 1 Number of modes to be evaluated

MC2(J) 1 Azimuthal eigenvalue for TEm,n and TMm n

modes

LTM(J) TRUE compute kz and fields for TM0, n and TEM
modes

LTE(J) FALSE Compute kz and fields for TE modes

LMX(J) FALSE Compute kz and fields .for TEm,n and TMm,n
modes

RKZG(J) Initial guess for k

RATIOG(J) Initial guess for a

NLPLT -- printing and plotting control

LPPLOT FALSE Generate field plots for the print file
COAD7P

LPRINT TRUE Generate output data for COAD7P

LDPLOT FALSE Generate field plots in subroutine DPLOT

LDFL FALSE ith field component output plot generated

LDER FALSE Field component 1; Er

LDET FALSE Field component 2; E

LDEZ FALSE Field component 3; E z

LDDR FALSE Field component 4; Dr

LDDR FALSE Field component 5; Dr

LDDZ FALSE Field component 6; Dz
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LDBR FALSE Field component 7; Br

LDBT FALSE Field component 8; B

LDBZ FALSE Field component 9; Bz

LDHR FALSE Field component 10; Hr

LDHT FALSE Field component 11; H

LDHz FALSE Field component 12; Hz

LDPC FALSE Generate plot of the Poynting vector
term E Hf

LDPS FALSE Generate plot of the Poynting vector
term E H

NLDGR -- DGEAR control variables

HTP 1.0 E-6 Next step size in x(independent vari-
able)

TOLT 1.0 E-8 Relative error bound

INDXT I Indicates the type of call to the sub-
routines called by DGEAR

MITERT I Iteration method indicator

NLZRE -- ZREALI control variables

EPS 1.0 E-5 Convergence criterion: a root, X(l), is
acceptable if ABS (F(X(l))) < EPS

NSIG 2 Convergence criterion: a root is accepted
if two successive approximations to a
given root agree in the first NSIG digits

ITMAX 100 Maximum number of iterations

NLEO4 - EO4JBF control variables

d MAXCAL 560 Number of function iterations

XTOL 1.0 E-5 Accuracy to which the solution is desired
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FEST 0.0 Estimate of the function value at the
minimum

STEPMX 1.0 E+5 Estimate of the Euclidean distance be-
tween the solution and the starting point

BL(1,J) -1000 Fixed lower bound for kz

BL(2,J) -100 Fixed lower bound for a

BU(l,J) 1000 Fixed upper bound for kz

BU(2,J) 100 Fixed upper bound for a

NLCAD -- DCADRE control variables

AERR 1.0 E-5 Absolute error of the zero

ERROR 1.0 E-5 Estimated bound on the absolute error of
the zero

b,.
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APPENDIX C

INTERPOLATION OF A DISCONTINUOUS FUNCTION

As mentioned in Section 4.2, a discontinuous dielectric profile

will generate a "ringing" in the neighborhood of the jump if the stan-

dard spline approach is used. The approach described below is a modifi-

cation for a discontinuous function.

Let the range of the function be [a, b], with the given values at

Xi, 1 < i < N, and x, - a and xN - b. Let the values of the function at

xi be equal to Yi. The standard spline coefficients for the interval

[xig xt+,) are defined as aj, bi, ci, and di, where the interpolated

function for x in the interval is given by

Y"a + b U+c u + diu3  (C.1)

-j where u - x - xI. Since the splines normally are continuous across the

interval [xi.I , xi), [xi , Xi+l), the following must hold:

ai_1 + bi l(xi - xi-1 ) + ci l(xi - X'11 )
2 + d il(x i - Xia1)3 . ai (C.2)

Therefore, a discontinuity may be introduced across an interval junction

by modifying the ai term only.

Introduce a discontinuity across the interval junction by defining

Yi as the value at the open end of the left interval and Ti as the value

at the closed end of the right interval. Also, only let Ti be defined
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for i contained in I, the set of interval junctions that are discontinu-

ous. Next, define a new set of function values Zi by

Z- IRYi - j (T- YJ (C.3)

i.-. j )i

*, By construction, this set of points is "smooth," since the discontinui-

ties have all been subtracted off. The standard spline coefficients are

then calculated for these values. Finally, the discontinuity is rein-

troduced by modifying the constant terms ai to Ai,

A i -.a,-  j. (T-Y k) (C.4)

pi

Using this modified set of spline coefficients (Ai, bil, c, di) Will

generate the correct step discontinuity across the interval junctions

and a smooth value for the function inside the intervals.

4M.O
4
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APPENDIX D I
VARIABLE DEFINITIONS

The variables used in the main program and subroutines are pre-

sented. For compactness, variables which are used throughout the pro- I.;
gram will be defined only in the section where they first appear. The

variables listed for the subroutines are local. Section D.7 will define K

the variables set by the program and used in the calling argument of the

IMSL and NAG routines. Before proceeding, we define the index variables

used in the arrays,

I -- radial position

J - mode

K -- mode

L-- frequency

D.1 Main Program (COAD7R) .-

Titles and Headers -- used for output file purposes r
Variable

Name Function Type Units .

CFTIT Title for hard copy field plots Character --- .

CMESS Label for hard copy field plots Character ---

CVERS Title used in the output print Character -

file COAD7P

DATE Current date for in COAD7P --

TIME Current time of printing for in
COAD7P
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Variable

Name Function Tvp. Units

Constants -- physical and numerical constants

PI02 w/2 Real

EPSO C0 (permittivity of air) Real Farad meter-1

UO 10 (permeability of air) Real Henry meter-1

VLIGHT co (speed of light in vacuum) Real Meters s-I

Program Flow Control

K Mode index Integer

L Frequency index Integer

FREQ Current value of the frequency Real GHz

DELFRQ Frequency step Real GHz

SRKZ(K) Sign of the final value of k. Real
for the kth mode

V Dielectric Profile -- The following variables and arrays define and
aid the processing of the dielectric profile

NJUMPS Total number of discontinuities Integer
in the dielectric profile

NPTS Actual number of points Integer
(NPTST-NJUMPS) at which the
dielectric profile is defined

XPA(l) Radial positions at which Real
dielectric profile is defined;
length that of XPAT(l)-NJUMPS

DRELA(1) Defines dielectric profile, Real

length is that of DRELT-NJUMPS I

DRELN(l) DRELN(l) - LOGe (DRELN(l)) Real

DRELJ(1) Value of the "Jump" at the ith Real -
discontinuity in the dielectric•i
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Variable
Name Function T Units

DRATIO(l) Ratio of DRELA (I + 1) to Real --

DRELA (1) at the ith discon-
tinuity in the dielectric

AJUMP(l) Radial position of the ith Real Meters
* discontinuity in the dielectric

IJUMP(l) Index of the radial position of Real
ith discontinuity in the
dielectric

DRELD(1) "Smoothed" dielectric profile; Real

DRELD(l) - DRELT(l) - DRELJ(1)

DRELDS(1,3) Spline coefficients for DRELDS Real

at ith radial position

DRELNS(1,3) Spline coefficients for DRELNS Real

at ith radial position

Shooting Parameters -- Shooting parameters and related
variables computed by the program

ROOTS(K) kz for kth mode Complex Meter -1

RATIOA(K) a for kth mode Real ---

RMIN(K) Final value of minimum in Real

EO4JBF for kth mode

ORTHOG(L,J,K) Computed value of orthogonal- Real
ity between modes J and K at
frequency L

Integration Variables- The integration variables below
are defined in Section 3.6

YVAR(l) Y1 Real

YVAR(2) Y Real
YVAR(3) 3 Real 

YVAR(4) Y3 Real

YPRIME(l) Y Real
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REMOVE"

Variable
Name Function T Units

YPRIHE(2) Yi Real
YFRIME(3) Y Real---

YPRIME(4) Y4 Real

Field Components -- Field values as a function of r and related arrays
used in processing the field components

ER(I,L,K) Er at the ith radial point for Real Volts meter- I

frequency L and mode K

ET(I,L,K) E at the ith radial point for Real Volts meter- 1

frequency L and mode K

EZ(I,L,K) Ez at the ith radial point for Real Volts meter- I

frequency L and mode K

DR(I,L,K) Dr at the ith radial point for Real Coulombs meter - 2

frequency L and mode K

DT(I,L,K) D at the ith radial point for Real Coulombs meter- 2

frequency L and mode K

DZ(I,L,K) Dz at the ith radial point for Real Coulombs meter - 2

frequency L and mode K

BR(I,L,K) Br at the ith radial point for Real Weber meter - 2

frequency L and mode K

BT(I,L,K) B at the ith radial point for Real Weber meter- 2

fequency L and mode K

BZ(I,L,K) Bz at the ith radial point for Real Weber meter- 2

frequency L and mode K

. R(I,L,K) Hr at the ith radial point for Real Amperes meter- I

frequency L and mode K

HT(I,L,K) H at the ith radial point for Real Amperes meter- '

ftequency L and mode K

HZ(I,L,K) Hz at the ith radial point for Real Amperes meter -'

frequency L and mode K
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Variable
Name Function Type Units

PC(I,L,K) Value of the Poynting vector Real Watts
component Er * H at the ith
radial point for frequency L
and mode K

PS(I,L,K) Value of the Poynting vector Real Watts
component E, < Hr at the ith
radial point for frequency L
and mode K

FLD(I,L,K,N) Used in processing the field Real -

components; equivalenced to the
Nth field component

DRP(I,L,K) Derivative of Dr with respect Real Coulombs meter- 3

to r at the ith radial point .
for frequency L and mode K

ETP(I,LK) Derivative of E with respect Real Volts meter - 2

to r at the ith radial point
for frequency L and mode K

e' -3"
DTP(I,L,K) Derivative of D with respect Real Coulombs meter.

to r at the ithradial point
for frequency L and mode K

ERDIFF(I,L,K) Value of the "Jump" in Er at Real Volts meter -

the ith discontinuity in the
dielectric

DTDIFF(I,L,K) Value of the "Jump" in D at Real Coulombs meter - 2

the ith discontinuity in the
dielectric

DZDIFF(I,L,K) Value of the "jump" in Dz at Real Coulombs meter - 2

the ith discontinuity in the
dielectric

ERD(I,L,K) "Smoothed" field component E Real Volts meter -

ERD(I,L,K) - ER(I,L,K) - r
ERDIFF(I,L,K)

DTD(I,L,K) "Smoothed" field component D Real Coulombs meter 2

DTD(I,L,K) - DT(I.LK) -
DTDIFF(I,L,K)

DZD(I,L,K) "Smoothed" field component Dz; Real Coulombs meter- 2

DZD(I,L,K) - DZ(I,L,K) - z

DZDIFF(I,L,K)
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..,

Variable

Name Function Type Units

D.2 Subroutine DERIV

FDRV First derivative of the dielec- Real --

tric profile at a given point

DREL Dielectric value at a given point Real ---

FCTR1 Normalized value of r-' Real
%2

FCTR2 Normalized value of kReal
z~~2 -2 '-

FCTR3 Normalized value of W c Real

FCTR4 m2 + 1 Real I

FCTR5 DREL-1 Real -

D.3 Subroutine PARDRV

Processing and Control -- The variables FDRV, DREL, FCTRI, FCTR2, FCTR3,
FCTR4, and FCTR5 are used here as in sub-
routine DERIV and will not be repeated. The
following variables are defined in Section 3.6

PD(I,i) PDI, 1  Real ---

PD(i,2) PDI, 2  Real -

PD(I,3) PDI, 3  Real ---

PD(I,4) PD Real --

PD(2,i) PD2 ,1  Real N

PD(2,2) PD2 ,2  Real -,

PD(2,3) PD2 ,3  Real

PD(2.4) PD2,4  Real ---
P2,4

PD(3,2) PD3 ,1  Real

P13(3,2) PD3 ,2  Real--

PD(3,3) PD3 ,3  Real

PD(3,4) PD3 ,4  Real ---
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Variable

Name Function. Type Units

PD(4,1) PD4 ,1  Real --

-' PD(4,2) PD4 ,2  Real

PD(4,3) PD4 3  Real

i* PD(4,4) PD4 ,4  Real

D.4 Function FNCTI

XEND Normalized endpoint used by DGEAR Real

FNCTI Functional value equal to one Real

of the following equations:

TM0, n and TEM modes : equation 93

TE0,n modes : equation 94 .

o/

D.5 Function FNCT2

XEND Normalized endpoint used by DGEAR Real ---

FC Functional value equal to Eq. 95 Real ---

D.6 Subroutine NORMAL

Spline Arrays -- The following arrays store the computed spline coeffi-
cients generated by the routine ICSCCU and evaluated by

" ICSEVU and DCSEVU. The arrays below are also used in
subroutine ORTHO and function CXINT.

ERS(I,3,2) Spline coefficients for Er at Real ---

ith radial position

ETS(I,3,2) Spline coefficients for E at Real
ith radial position

HRS(I,3,2) Spline coefficients for Hr at Real
ith radial position

. HTS(I,3,2) Spline coefficients for H at Real --

ith radial position
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Variable
Name FunctionType Units

D.7 IMSL and NAG Routines

DGEAR

N Number of first order differ- Integer
ential equations

XP On input, XP supplies the ini- Real ---

tial value and is used only on
the first call. On output, XP 'I

is replaced with the current
value of the independent vari-
able at which integration has
been completed

IWK Integer work array of length N Integer -

WK Work array of length 4*N+METHT+ Real

MITERT

ZREALI

EPS2 Spread criteria for multiple Real

roots

ETA Used to restart a computation Real ---

when multiple roots are desired

EO4JBE

. N Number of variables Real

INPRINT Specifies the frequency with Integer
which subroutine MONIT is to
be called. There are three
options:

IPRINT > 0: MONIT called once
every IFRINT iter-
ations

IPRINT - 0: MONIT called at
final point only

IPRINT < 0: MONIT not called
at all
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Variable
Name Function Type Units

LOCSH Specifies whether or not the Logical ---

user wishes a "local search"
(TRUE or FALSE, respectively)
be performed when a point is
found which is thought to be
a constrained minimum

ETA Upon judicious choice for the Real
range 0.0 4 ETA 4 1.0, the
linear minimization process

is made more efficient

IBOUND Specifies whether the problem Integer

is unconstrained or bounded.
The options are:

IBOUND - 0: Variables are
bounded and the
user supplies Lj
and U

IBOUND - 1: Problem is uncon-
strained and the
function FUNCT is
called N times

IBOUND - 2: Variables are
.: bounded

LH Spscifies the actual dimension Integer
of the NAG subroutine HESL
called by EO4JBF

IW Workspace array Integer

LIW Specifies the actual dimension Integer
of IW as declared in the (sub)
program from which EO4JBF is
called

W Workspace array of at least 9*N Real

LW Specifies the actual dimension Integer
of W as declared in the (sub)
program from which EO4JBF is
called
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Variable

Name Function.Tt Units

DCADRE

RERR Desired relative error in the Real--
S answer
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APPENDIX E

VALUES OF THE RADIAL POINTS

The values of the radial po'-.ts at which the dielectric profile

was defined for both cases in Chapter 5 are presented below (in centi-

meters):

r, = 1.0000 r 24 -1.5000

r 2  - 1.0400 r 25 -1.5010

r3 -1.0800 r26 -1.5050

r4-1.1200 r 27 -1.5075

r5 -1.1600 r 28 -1.5100

r6- 1.2000 r 29 m 1.5150

r7 1.2400 r 30 m 1.5175

r - 1.2800 r 31 m 1.5200

r9  m 1.3200 r 32 m 1.5250

r 0 1.3600 r 33 - 1.5300

r - 1.4000 r 34 - 1.5400

12- 1.4400 r35 m 1.5600

r 1.4600 r 6  1.6000

r 14 m 1.4650 r 37 w 1.6400

r 15 - 1.4700 r 38 m 1.6800

r -6 1.4750 r 39 - 1.7200

r17 m 1.4800 r40 m1.7600

r 8 1.4850 r 41 m 1.8000

r - 1.4900 r42 m 1.8400

r 2 1.4925 r 4 3 -1.8800 .

r 1.4950 r44 m 1.9200

r 22 m 1.4990 r 45 m 1.9600

r 3 1.5000 r46 m 2.0000
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